Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 235
Filter
1.
Bioorg Chem ; 147: 107373, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38653149

ABSTRACT

The escalating prevalence of Alzheimer's disease (AD) has prompted extensive research into potential therapeutic interventions, with a specific focus on molecular targets such as amyloid beta (Aß) and tau protein aggregation. In this study, a series of α-ketoamide derivatives was synthesized from ß,γ-unsaturated α-keto thioesters, achieving high purity and good yield. Thioflavin T based Aß aggregation assay identified four promising compounds (BD19, BD23, BD24, and BD27) that demonstrated significant inhibitory effects on Aß aggregation. BD23, selected for its better solubility (0.045 ± 0.0012 mg/ml), was further subjected to in vitro Parallel Artificial Membrane Permeability Assay to determine the Blood-Brain-Barrier permeability and emerged as BBB permeable with permeability rate (Pe) of 10.66 ± 8.11 × 10-6 cm/s. In addition to its Aß inhibitory properties, BD23 exhibited significant inhibition of heparin-induced tau aggregation and demonstrated non-toxicity in SHSY5Y cell lines. Subsequent in vivo assays were conducted, administering compound BD23 to an Aß induced mouse model of AD at various doses (1, 2, & 5 mg/kg). The results revealed a noteworthy enhancement in cognitive functions, particularly when BD23 was administered at a dosage of 5 mg/kg, comparable to the effects observed with the standard dose of Donepezil (DNP). In silico investigations, including molecular docking, molecular dynamics simulations, and Density Functional Theory calculations provided insights into BD23's interactions with the targets and electronic properties. These analyses contribute to the understanding of the therapeutic potential of the lead compounds BD23 which further pave the way for further exploration of its therapeutic potential in the context of AD.

2.
Eur J Med Chem ; 270: 116356, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38579621

ABSTRACT

The heat shock protein 90 kDa (Hsp90) molecular chaperone machinery is responsible for the folding and activation of hundreds of important clients such as kinases, steroid hormone receptors, transcription factors, etc. This process is dynamically regulated in an ATP-dependent manner by Hsp90 co-chaperones including a group of tetratricopeptide (TPR) motif proteins that bind to the C-terminus of Hsp90. Among these TPR containing co-chaperones, FK506-binding protein 51 kDa (FKBP51) is reported to play an important role in stress-related pathologies, psychiatric disorders, Alzheimer's disease, and cancer, making FKBP51-Hsp90 interaction a potential therapeutic target. In this study, we report identification of potent and selective inhibitors of FKBP51-Hsp90 protein-protein interaction using a structure-based virtual screening approach. Upon in vitro evaluation, the identified hits show a considerable degree of selectivity towards FKBP51 over other TPR proteins, particularly for highly homologous FKBP52. Tyr355 of FKBP51 emerged as an important contributor to inhibitor's specificity. Additionally, we demonstrate the impact of these inhibitors on cellular energy metabolism, and neurite outgrowth, which are subjects of FKBP51 regulation. Overall, the results from this study highlight a novel pharmacological approach towards regulation of FKBP51 function and more generally, Hsp90 function via its interaction with TPR co-chaperones.


Subject(s)
HSP90 Heat-Shock Proteins , Tacrolimus Binding Proteins , Humans , Protein Binding , Tacrolimus Binding Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Molecular Chaperones , Transcription Factors/metabolism
3.
Med Chem ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685782

ABSTRACT

The versatile basic structure of piperazine allows for the development and production of newer bioactive molecules that can be used to treat a wide range of diseases. Piperazine derivatives are unique and can easily be modified for the desired pharmacological activity. The two opposing nitrogen atoms in a six-membered piperazine ring offer a large polar surface area, relative structural rigidity, and more acceptors and donors of hydrogen bonds. These properties frequently result in greater water solubility, oral bioavailability, and ADME characteristics, as well as improved target affinity and specificity. Various synthetic protocols have been reported for piperazine and its derivatives. In this review, we focused on recently published synthetic protocols for the synthesis of the piperazine and its derivatives. The structure-activity relationship concerning different biological activities of various piperazine-containing drugs was also highlighted to provide a good understanding to researchers for future research on piperazines.

4.
Int J Med Mushrooms ; 26(4): 29-39, 2024.
Article in English | MEDLINE | ID: mdl-38523447

ABSTRACT

To study the best substrate for the Indian subcontinent, four different substrates (sawdust + wheat bran, wheat straw + wheat bran + corn cobs, sawdust + corn cobs and wheat straw + wheat bran) were screened for six different Flammulina velutipes strains. The antioxidant and antibacterial properties were studied for these strains. In study it was found that the strain DMRX-767 and DMRX-768 were the most promising for yield and biological efficiency in all substrates and wheat straw + wheat bran being the best with respect to BE. To corroborate the findings, the best strain and best substrate trails were repeated. DMRX-767 and DMRX-768 were the most promising for yield and biological efficiency in all substrates, with wheat straw+wheat bran were again found the best. The methanolic extract of strain DMRX-166 showed highest antibacterial properties as highest inhibition is found for Bacillus subtilis and Pseudomonas syringae. However, DMRO-253 inhibited Ralstonia solanacearum and Xanthomonas campestris. DMRX-768 has the best scavenging ability followed by DMRO-253.


Subject(s)
Agaricales , Flammulina , Antioxidants/pharmacology , Dietary Fiber , Bacteria , Anti-Bacterial Agents/pharmacology
5.
Curr Top Med Chem ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500288

ABSTRACT

BACKGROUND: Thiazolidine-2,4-dione (2,4-TZD) is a flexible pharmacophore and a privileged platform and contains a five-membered ring with a 2-oxygen atom with double bond 2,4- position and one nitrogen atom as well as sulphur containing in the heterocyclic compound. A famous electron-rich nitrogen transporter combines invigorating electronic properties with the prospective for elemental applications. Thiazolidine-2,4-dione analogues have been synthesized using a variety of methods, all of which have shown to have a strong biological effect. OBJECTIVE: The study of the biological activity of Thiazolidine-2,4-dione derivatives has been a fascinating field of pharmaceutical chemistry and has many purposes. This derivative described in the literature between 1995 to 2023 was the focus of this study. Thiazolidine-2,4-diones have been discussed in terms of their introduction, general method, synthetic scheme and antidiabetic significance in the current review. CONCLUSION: Thiazolidine-2,4-diones are well-known heterocyclic compounds. The synthesis of Thiazolidine-2,4-diones has been described using a variety of methods. Antidiabetic activity has been discovered in several Thiazolidine-2,4-dione derivatives, which enhance further research. The use of Thiazolidine-2,4-diones to treat antidiabetics has piqued researchers' interest in learn-ing more about Thiazolidine-2,4-diones.

6.
J Asian Nat Prod Res ; 26(6): 663-680, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38373215

ABSTRACT

Kinase is an enzyme that helps in the phosphorylation of the targeted molecules and can affect their ability to react with other molecules. So, kinase influences metabolic reactions like cell signaling, secretory processes, transport of molecules, etc. The increased activity of certain kinases may cause various types of cancer, i.e. leukemia, glioblastoma, and neuroblastomas. So, the growth of particular cancer cells can be prevented by the inhibition of the kinase responsible for those cancers. Natural products are the key resources for the development of new drugs where approximately 60% of anti-tumor drugs are being developed with the same including specific kinase dwellers. This study comprised molecular interactions of various molecules (obtained from natural sources) as kinase inhibitors for the treatment of cancer. It is expected that by analyzing the skeleton behavior, the process of action, and the body-related activity of these organic products, new cancer-avoiding molecules can be developed.


Subject(s)
Antineoplastic Agents , Biological Products , Neoplasms , Protein Kinase Inhibitors , Humans , Biological Products/pharmacology , Biological Products/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Molecular Structure , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
7.
Proc Natl Acad Sci U S A ; 121(8): e2310502121, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38346193

ABSTRACT

The placenta establishes a maternal-fetal exchange interface to transport nutrients and gases between the mother and the fetus. Establishment of this exchange interface relies on the development of multinucleated syncytiotrophoblasts (SynT) from trophoblast progenitors, and defect in SynT development often leads to pregnancy failure and impaired embryonic development. Here, we show that mouse embryos with conditional deletion of transcription factors GATA2 and GATA3 in labyrinth trophoblast progenitors (LaTPs) have underdeveloped placenta and die by ~embryonic day 9.5. Single-cell RNA sequencing analysis revealed excessive accumulation of multipotent LaTPs upon conditional deletion of GATA factors. The GATA factor-deleted multipotent progenitors were unable to differentiate into matured SynTs. We also show that the GATA factor-mediated priming of trophoblast progenitors for SynT differentiation is a conserved event during human placentation. Loss of either GATA2 or GATA3 in cytotrophoblast-derived human trophoblast stem cells (human TSCs) drastically inhibits SynT differentiation potential. Identification of GATA2 and GATA3 target genes along with comparative bioinformatics analyses revealed that GATA factors directly regulate hundreds of common genes in human TSCs, including genes that are essential for SynT development and implicated in preeclampsia and fetal growth retardation. Thus, our study uncovers a conserved molecular mechanism, in which coordinated function of GATA2 and GATA3 promotes trophoblast progenitor-to-SynT commitment, ensuring establishment of the maternal-fetal exchange interface.


Subject(s)
Gene Expression Regulation, Developmental , Maternal-Fetal Exchange , Pregnancy , Female , Humans , Animals , Mice , Placenta , Trophoblasts , Cell Differentiation/physiology , Fetal Development , GATA Transcription Factors
8.
Ocul Surf ; 32: 13-25, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38191093

ABSTRACT

PURPOSE: Corneal fibrosis and neovascularization (CNV) after ocular trauma impairs vision. This study tested therapeutic potential of tissue-targeted adeno-associated virus5 (AAV5) mediated decorin (DCN) and pigment epithelium-derived factor (PEDF) combination genes in vivo. METHODS: Corneal fibrosis and CNV were induced in New Zealand White rabbits via chemical trauma. Gene therapy in stroma was delivered 30-min after chemical-trauma via topical AAV5-DCN and AAV5-PEDF application using a cloning cylinder. Clinical eye examinations and multimodal imaging in live rabbits were performed periodically and corneal tissues were collected 9-day and 15-day post euthanasia. Histological, cellular, and molecular and apoptosis assays were used for efficacy, tolerability, and mechanistic studies. RESULTS: The AAV5-DCN and AAV5-PEDF combination gene therapy significantly reduced corneal fibrosis (p < 0.01 or p < 0.001) and CNV (p < 0.001) in therapy-given (chemical-trauma and AAV5-DCN + AAV5-PEDF) rabbit eyes compared to the no-therapy given eyes (chemical-trauma and AAV5-naked vector). Histopathological analyses demonstrated significantly reduced fibrotic α-smooth muscle actin and endothelial lectin expression in therapy-given corneas compared to no-therapy corneas on day-9 (p < 0.001) and day-15 (p < 0.001). Further, therapy-given corneas showed significantly increased Fas-ligand mRNA levels (p < 0.001) and apoptotic cell death in neovessels (p < 0.001) compared to no-therapy corneas. AAV5 delivered 2.69 × 107 copies of DCN and 2.31 × 107 copies of PEDF genes per µg of DNA. AAV5 vector and delivered DCN and PEDF genes found tolerable to the rabbit eyes and caused no significant toxicity to the cornea. CONCLUSION: The combination AAV5-DCN and AAV5-PEDF topical gene therapy effectively reduces corneal fibrosis and CNV with high tolerability in vivo in rabbits. Additional studies are warranted.


Subject(s)
Corneal Neovascularization , Dependovirus , Disease Models, Animal , Eye Proteins , Fibrosis , Genetic Therapy , Nerve Growth Factors , Serpins , Animals , Rabbits , Genetic Therapy/methods , Fibrosis/therapy , Corneal Neovascularization/therapy , Corneal Neovascularization/genetics , Corneal Neovascularization/pathology , Corneal Neovascularization/metabolism , Dependovirus/genetics , Eye Proteins/genetics , Eye Proteins/metabolism , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Serpins/genetics , Serpins/metabolism , Decorin/genetics , Decorin/metabolism , Cornea/pathology , Cornea/metabolism , Genetic Vectors
9.
Bioengineering (Basel) ; 11(1)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38247972

ABSTRACT

BACKGROUND: Twenty-four-hour heart rate (HR) integrates multiple physiological and psychological systems related to health and well-being, and can be continuously monitored in high temporal resolution over several days with wearable HR monitors. Using HR data from two independent datasets of cancer patients and their caregivers, we aimed to identify dyadic and individual patterns of 24 h HR variation and assess their relationship to demographic, environmental, psychological, and clinical variables of interest. METHODS: a novel regularized approach to high-dimensional canonical correlation analysis (CCA) was used to identify factors reflecting dyadic and individual variation in the 24 h (circadian) HR trajectories of 430 people in 215 dyads, then regression analysis was used to relate these patterns to explanatory variables. RESULTS: Four distinct factors of dyadic covariation in circadian HR were found, contributing approximately 7% to overall circadian HR variation. These factors, along with non-dyadic factors reflecting individual variation exhibited diverse and statistically robust patterns of association with explanatory variables of interest. CONCLUSIONS: Both dyadic and individual anomalies are present in the 24 h HR patterns of cancer patients and their caregivers. These patterns are largely synchronous, and their presence robustly associates with multiple explanatory variables. One notable finding is that higher mood scores in cancer patients correspond to an earlier HR nadir in the morning and higher HR during the afternoon.

10.
Biomater Adv ; 158: 213761, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38281321

ABSTRACT

Laminins are essential in basement membrane architecture and critical in re-epithelialization and angiogenesis. These processes and collagen deposition are vital in skin wound healing. The role of angiogenic peptides in accelerating the wound-healing process has been known. The bioactive peptides could be a potential approach due to their similar effects as growth factors and inherent biocompatible and biodegradable nature with lower cost. They can also recognize ligand-receptor interaction and mimic the extracellular matrix. Here, we report novel angiogenic DYVRLAI, CDYVRLAI, angiogenic-collagen PGPIKVAV, and Ac-PGPIKVAV peptides conjugated sodium carboxymethyl cellulose hydrogel, which was designed from laminin. The designed peptide exhibits a better binding with the α3ß1, αvß3, and α5ß1 integrins and CXCR2 receptor, indicating their angiogenic and collagen binding efficiency. The peptides were evaluated to stimulate wound healing in full-thickness excision wounds in normal and diabetic mice (type II). They demonstrated their efficacy in terms of angiogenesis (CD31), re-epithelialization through regeneration of the epidermis (H&E), and collagen deposition (MT). The synthesized peptide hydrogel (DYVRLAI and CDYVRLAI) showed enhanced wound contraction up to 10.1 % and 12.3 % on day 7th compared to standard becaplermin gel (49 %) in a normal wound model. The encouraging results were also observed with the diabetic model, where these peptides showed a significant decrease of 5.20 and 5.17 % in wound size on day 10th compared to the commercial gel (9.27 %). These outcomes signify that the modified angiogenic peptide is a cost effective, novel peptide motif to promote dermal wound healing in both models.


Subject(s)
Diabetes Mellitus, Experimental , Laminin , Animals , Mice , Laminin/pharmacology , Hydrogels/pharmacology , Collagen/pharmacology , Peptides/pharmacology , Peptides/therapeutic use , Wound Healing , Angiogenic Proteins/pharmacology , Integrin alpha5beta1
11.
J Biomol Struct Dyn ; : 1-21, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38285669

ABSTRACT

Chronic pain is a common and debilitating condition with a huge social and economic burden worldwide. Currently, available drugs in clinics are not adequately effective and possess a variety of severe side effects leading to treatment withdrawal and poor quality of life. Recent findings highlight the potential role of autotaxin (ATX) as a promising novel target for chronic pain management, extending beyond its previously established involvement in arthritis and other neurological disorders, such as Alzheimer's disease. In the present study, we used a virtual screening strategy by targeting ATX against commercially available natural compounds (enamine- phenotypic screening library) to identify the potential inhibitors for the treatment of chronic pain. After initial identification using molecular docking based virtual screening, molecular mechanics (MM/GBSA), ADMET profiling and molecular dynamics simulation were performed to verify top hits. The computational screening resulted in the identification of fifteen top scoring structurally diverse hits that have free energy of binding (ΔG) values in the range of -25.792 (for compound Enamine_1850) to -74.722 Kcal/mol (for compound Enamine_1687). Moreover, the top-scoring hits have favourable ADME properties as calculated using in-silico algorithms. Additionally, the molecular dynamics simulation revealed the stable nature of protein-ligand interaction and provided information about amino acid residues involved in binding. This study led to the identification of potential autotaxin inhibitors with favourable pharmacokinetic properties. Identified hits may further be investigated for their safety and efficacy potential using in-vitro and in-vivo models of chronic pain.Communicated by Ramaswamy H. Sarma.

12.
J Biomol Struct Dyn ; 42(1): 509-527, 2024.
Article in English | MEDLINE | ID: mdl-37114423

ABSTRACT

Alzheimer's disease (AD) is a multifactorial neurological disorder characterized by memory loss and cognitive impairment. The currently available single-targeting drugs have miserably failed in the treatment of AD, and multi-target directed ligands (MTDLs) are being explored as an alternative treatment strategy. Cholinesterase and monoamine oxidase enzymes are reported to play a crucial role in the pathology of AD, and multipotent ligands targeting these two enzymes simultaneously are under various phases of design and development. Recent studies have revealed that computational approaches are robust and trusted tools for identifying novel therapeutics. The current research work is focused on the development of potential multi-target directed ligands that simultaneously inhibit acetylcholinesterase (AChE) and monoamine oxidase B (MAO-B) enzymes employing a structure-based virtual screening (SBVS) approach. The ASINEX database was screened after applying pan assay interference and drug-likeness filter to identify novel molecules using three docking precision criteria; High Throughput Virtual Screening (HTVS), Standard Precision (SP), and Extra Precision (XP). Additionally, binding free energy calculations, ADME, and molecular dynamic simulations were employed to get structural insights into the mechanism of protein-ligand binding and pharmacokinetic properties. Three lead molecules viz. AOP19078710, BAS00314308 and BDD26909696 were successfully identified with binding scores of -10.565, -10.543 & -8.066 kcal/mol against AChE and -11.019, -12.357 & -10.068 kcal/mol against MAO-B, better score as compared to the standard inhibitors. In the near future, these molecules will be synthesized and evaluated through in vitro and in vivo assays for their inhibition potential against AChE and MAO-B enzymes.


Subject(s)
Alzheimer Disease , Molecular Dynamics Simulation , Humans , Alzheimer Disease/metabolism , Acetylcholinesterase/metabolism , Molecular Docking Simulation , Ligands , Monoamine Oxidase , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Structure-Activity Relationship
13.
Macromol Biosci ; 24(1): e2300138, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37326828

ABSTRACT

Gasotransmitters, gaseous signaling molecules including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2 S), maintain myriad physiological processes. Low levels of gasotransmitters are often associated with specific problems or diseases, so NO, CO, and H2 S hold potential in treating bacterial infections, chronic wounds, myocardial infarction, ischemia, and various other diseases. However, their clinical applications as therapeutic agents are limited due to their gaseous nature, short half-life, and broad physiological roles. One route toward the greater application of gasotransmitters in medicine is through localized delivery. Hydrogels are attractive biomedical materials for the controlled release of embedded therapeutics as they are typically biocompatible, possess high water content, have tunable mechanical properties, and are injectable in certain cases. Hydrogel-based gasotransmitter delivery systems began with NO, and hydrogels for CO and H2 S have appeared more recently. In this review, the biological importance of gasotransmitters is highlighted, and the fabrication of hydrogel materials is discussed, distinguishing between methods used to physically encapsulate small molecule gasotransmitter donor compounds or chemically tether them to a hydrogel scaffold. The release behavior and potential therapeutic applications of gasotransmitter-releasing hydrogels are also detailed. Finally, the authors envision the future of this field and describe challenges moving forward.


Subject(s)
Gasotransmitters , Hydrogen Sulfide , Gasotransmitters/physiology , Gasotransmitters/therapeutic use , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/therapeutic use , Nitric Oxide , Carbon Monoxide/pharmacology , Carbon Monoxide/therapeutic use , Hydrogels/pharmacology , Hydrogels/therapeutic use
14.
Recent Pat Anticancer Drug Discov ; 19(3): 257-267, 2024.
Article in English | MEDLINE | ID: mdl-37497702

ABSTRACT

Among the deadliest diseases, cancer is characterized by tumors or an increased number of a specific type of cell because of uncontrolled divisions during mitosis. Researchers in the current era concentrated on the development of highly selective anticancer medications due to the substantial toxicities of conventional cytotoxic drugs. Several marketed drug molecules have provided resistance against cancer through interaction with certain targets/growth factors/enzymes, such as Telomerase, Histone Deacetylase (HDAC), Methionine Aminopeptidase (MetAP II), Thymidylate Synthase (TS), Glycogen Synthase Kinase-3 (GSK), Epidermal Growth Factor (EGF), Vascular Endothelial Growth Factor (VEGF), Focal Adhesion Kinase (FAK), STAT3, Thymidine phosphorylase, and Alkaline phosphatase. The molecular structure of these drug molecules contains various heterocyclic moieties that act as pharmacophores. Recently, 1,3,4- oxadiazole (five-membered heterocyclic moiety) and its derivatives attracted researchers as these have been reported with a wide range of pharmacological activities, including anti-cancer. 1,3,4- oxadiazoles have exhibited anti-cancer potential via acting on any of the above targets. The presented study highlights the synthesis of anti-cancer 1,3,4-oxadiazoles, their mechanism of interactions with targets, along with structure-activity relationship concerning anti-cancer potential.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Oxadiazoles/pharmacology , Oxadiazoles/therapeutic use , Vascular Endothelial Growth Factor A , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Molecular Structure , Structure-Activity Relationship , Neoplasms/drug therapy
15.
Mol Neurobiol ; 61(3): 1479-1494, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37726498

ABSTRACT

FK506-binding protein 51 kDa (FKBP51), encoded by Fkbp5 gene, gained considerable attention as an important regulator of several aspects of human biology including stress response, metabolic dysfunction, inflammation, and age-dependent neurodegeneration. Its catalytic peptidyl-prolyl isomerase (PPIase) activity is mediated by the N-terminal FK506-binding (FK1) domain, whereas the C-terminal tetratricopeptide motif (TPR) domain is responsible for FKBP51 interaction with molecular chaperone heat shock protein 90 (Hsp90). To understand FKBP51-related biology, several mouse models have been created. These include Fkbp5 complete and conditional knockouts, overexpression, and humanized models. To dissect the role of FKBP51-Hsp90 interaction in FKBP51 biology, we have created an interaction-deficient mouse (Fkbp5TPRmut) by introducing two-point mutations in the TPR domain of FKBP51. FKBP51-Hsp90 interaction-deficient mice are viable, fertile and show Mendelian inheritance. Intracellular association of FKBP51 with Hsp90 is significantly reduced in homozygous mutants compared to wild-type animals. No behavioral differences between genotypes were seen at 2 months of age, however, sex-dependent differences were detected in Y-maze and fear conditioning tests at the age of 12 months. Moreover, we have found a significant reduction in plasma levels of corticosterone and adrenocorticotropic hormone in Fkbp5TPRmut mice after acute stress. In contrast to Fkbp5 knockout mice, females of Fkbp5TPRmut showed increased body weight gain under high-fat diet treatment. Our data confirm the importance of FKBP51-Hsp90 interactions for stress-related endocrine signaling. Also, Fkbp5TPRmut mice can serve as a useful in vivo tool to discriminate between Hsp90-dependent and independent functions of FKBP51.


Subject(s)
Diet, High-Fat , Sex Characteristics , Animals , Female , Humans , Infant , Male , Mice , HSP90 Heat-Shock Proteins/metabolism , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism
16.
Bioorg Chem ; 143: 106972, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37995640

ABSTRACT

Parkinson's disease (PD) is an age-related second most common progressive neurodegenerative disorder that affects millions of people worldwide. Despite decades of research, no effective disease modifying therapeutics have reached clinics for treatment/management of PD. Leucine-rich repeat kinase 2 (LRRK2) which controls membrane trafficking and lysosomal function and its variant LRRK2-G2019S are involved in the development of both familial and sporadic PD. LRRK2, is therefore considered as a legitimate target for the development of therapeutics against PD. During the last decade, efforts have been made to develop effective, safe and selective LRRK2 inhibitors and also our understanding about LRRK2 has progressed. However, there is an urge to learn from the previously designed and reported LRRK2 inhibitors in order to effectively approach designing of new LRRK2 inhibitors. In this review, we have aimed to cover the pre-clinical studies undertaken to develop small molecule LRRK2 inhibitors by screening the patents and other available literature in the last decade. We have highlighted LRRK2 as targets in the progress of PD and subsequently covered detailed design, synthesis and development of diverse scaffolds as LRRK2 inhibitors. Moreover, LRRK2 inhibitors under clinical development has also been discussed. LRRK2 inhibitors seem to be potential targets for future therapeutic interventions in the treatment and management of PD and this review can act as a cynosure for guiding discovery, design, and development of selective and non-toxic LRRK2 inhibitors. Although, there might be challenges in developing effective LRRK2 inhibitors, the opportunity to successfully develop novel therapeutics targeting LRRK2 against PD has never been greater.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/drug therapy , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mutation
17.
J Biomol Struct Dyn ; : 1-18, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38079329

ABSTRACT

Diabetes mellitus is considered as one of the principal global health urgencies of the twenty first century. In the present investigation, novel N-substituted 2,4-thiazolidinedione derivatives were designed, synthesized, and characterized by spectral techniques. All the newly synthesized N-substituted 2,4-thiazolidinedione derivatives were tested for in vitro α-glucosidase inhibitory activities and compounds A-12 and A-14 were found to be the most potent which were further subjected to in-vivo disaccharide loading test. The most potent compound was also found to be non-toxic in cytotoxicity studies. Further, docking studies were carried out to investigate the binding mode and key interactions with amino acid residues of α-glucosidase. Molecular dynamic simulations studies for the compounds acarbose, A2, A12, and A14 were done with α-glucosidase protein. Further, ΔG was calculated for acarbose, A2, A12, and A14. In silico studies and absorption, distribution, metabolism, excretion (ADME) prediction studies were also executed to establish the 'druggable' pharmacokinetic profiles. Here, we have developed novel N-substituted TZD analogues with different alkyl groups as α-glucosidase inhibitors.Communicated by Ramaswamy H. Sarma.

18.
ACS Chem Neurosci ; 14(24): 4383-4394, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38050970

ABSTRACT

Parkinson's disease (PD) is characterized by extrapyramidal motor disturbances and nonmotor cognitive impairments which impact activities of daily living. Although the etiology of PD is still obscure, autopsy reports suggest that oxidative stress (OS) is one of the important factors in the pathophysiology of PD. In the current study, we have investigated the impact of OS in PD by measuring the antioxidant glutathione (GSH) levels from the substantia nigra (SN), left hippocampus (LH) and neurotransmitter γ-amino butyric acid (GABA) levels from SN region. Concomitant quantitative susceptibility mapping (QSM) from SN and LH was also acquired from thirty-eight PD patients and 30 age-matched healthy controls (HC). Glutathione levels in the SN region decreased significantly and susceptibility increased significantly in PD compared to HC. Nonsignificant depletion of GABA was observed in the SN region. GSH levels in the LH region were depleted significantly, but LH susceptibility did not alter in the PD cohort compared to HC. Neuropsychological and physical assessment demonstrated significant impairment of cognitive functioning in PD patients compared to HC. GSH depletion was negatively correlated to motor function performance. Multivariate receiver operating characteristic (ROC) curve analysis on the combined effect of GSH, GABA, and susceptibility in the SN region yielded an improved diagnostic accuracy of 86.1% compared to individual diagnostic accuracy based on GSH (65.8%), GABA (57.5%), and susceptibility (69.6%). This is the first comprehensive report in PD demonstrating significant GSH depletion as well as concomitant iron enhancement in the SN region.


Subject(s)
Parkinson Disease , Humans , Activities of Daily Living , Magnetic Resonance Imaging/methods , Substantia Nigra , Glutathione , Magnetic Resonance Spectroscopy , gamma-Aminobutyric Acid
20.
Cureus ; 15(10): e47687, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38034208

ABSTRACT

Background The literature points towards the fact that paediatric elbow fractures happen more frequently and have greater variability when contrasted with adults. Between 65%-75% of pediatric fractures involve the upper extremity, and supracondylar humerus is the most common of them all. To know the exact site of injury and to estimate the degree of reduction after manipulation, the modified Baumann's angle, the Baumann's angle, the Humero-condylar angle, the Anterior humeral line, and the Radio-capitellar line are the parameters most commonly used. This study was carried out to compare the modified Baumann's angle between both upper limbs in the paediatric population. Methodology This cross-sectional study was conducted in a tertiary health care centre in Northern India for one year from September 1, 2021, to August 31, 2022. We included pediatric patients in the age group of 3-16 years. Age, sex, weight, height, BMI, secondary sexual characters, and handedness were noted in all the children enrolled in our study. In both the dominant and non-dominant sides, the mean arm length, the forearm length, the inter-epicondylar distance, the clinical carrying angle, the radiological carrying angle, and the modified Baumann's angle were calculated.  Results A total of 113 children were enrolled in the study. The majority of children (71.7%) had dominance on the right side. In both the dominant side and non-dominant side, mean arm length, forearm length, inter-epicondylar distance, clinical carrying angle, radiological carrying angle, and modified Baumann's angle values were calculated. On evaluating the data statistically, a significant difference between the two sides was observed for all the parameters (p<0.05), except forearm length (p-value -0.954). Multivariate analysis showed that only BMI was significantly negatively associated with modified Baumann's angle (p=0.016), and only age (0.019) and BMI (<0.001) were found to be significantly associated with the difference in modified Baumann's angle. Conclusions The findings of this study will be helpful in the management of elbow disorders and their reconstruction following trauma. A significant difference was found in the modified Baumann's angle between dominant and non-dominant sides, and it also showed a negative significant correlation with arm length, forearm length, and the presence of secondary sexual characteristics. The equations derived in this study will be helpful in the simple derivation of the modified Baumann's angle and its difference from simple measurements of the upper limb parameters.

SELECTION OF CITATIONS
SEARCH DETAIL
...